DEPARTMENT OF INDUSTRIAL ENGINEERING COURSE SYLLABUS

COURSE TITLE	ENGLISH CODE/NO	ARABIC	CREDITS			
		CODE/N O.	Th.	Pr.	Tr.	Tota l
Design of Industrial Experiments	IE 432	432 هـ ص	3	2	-	3
Pre-requisites:	IE332					
Course Role in Curriculum	Required or Elective:		Required Core Course			

Catalogue Description:

Principles of experimental design. Randomized complete block designs. Latin square and Greco-Latin square designs. General factorial designs. 2^k Factorial designs, Response surface methodology and robust design. Planning, performing and analysing industrial experiments.

Textbooks:

Montgomery D.C. (2009), Design and Analysis of Experiments, 7th Ed., ISBN: 978-0-470-39882-1, John Wiley and Sons, N.Y

Supplemental Materials:

- 1. Box G, Hunter S., Hunter W., (2005), Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition, John Wiley, NY
- 2. Cox D.R., (1992), Planning of Experiments, John Wiley, NY.
- 3. Cobb G.W, (2008), Introduction to Design and Analysis of Experiments, ISBN-13: 978-0470412169, John Wiley, NY.

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Understand the rationale behind teaching Design of Experiments (DOEs) as a course in Industrial Engineering
- 2. Appreciate the importance of (DOEs) as an effective approach for improving the quality and performance of various engineering systems and processes
- 3. Acquire the required knowledge for recognizing the need for applying DOEs in practice.
- 4. Know how to plan an experiment including the formulation of the problem understudy, the identification of the objectives, the selection of the relevant variables or parameters to be examined & the determination of the appropriate performance measures.
- 5. Develop an ability to effectively and efficiently design and execute industrial experiments.
- 6. Learn the necessary skills for analyzing the experimental data and interpreting the obtained results so that reliable conclusions can be drawn.

- 7. Obtain a background on how to utilize the Statistical and Engineering knowledge in detecting and modeling the potential causal relationship between the studied variables and the concerned performance measure(s).
- 8. Use Statistical & DOE software packages to analyze experimental data.
- 9. Present the results and conclusions drawn using DOE in a clear & proficient manner.

Topics to be Covered:			
1	Introduction to DOE, its link to IE & its importance as an approach to product and process improvement		
2	Planning experiments and the main steps for employing DOE along with the aids and tools needed for effective applications of DOE		
3	Selection of appropriate designs for comparative and factorial experiments	3	
4	Assignments of the factors to the selected design: the concept of full & fractional factorial experiments & confounding (aliasing)		
5	Analyzing Experimental data: Graphical tools, Half Normal Probability Plot, ANOVA & Regression Analysis, Data transformation	3	
6	Interpreting & presenting experimental results & Case Studies	2	
(a) (b	an ability to apply knowledge of mathematics, science, and engineeringan ability to design and conduct experiments, as well as to analyze and interpret data		
(b) (c) (d)	an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	N	
(e) an ability to identify, formulate, and solve engineering problems(f) an understanding of professional and ethical responsibility		√	
(g) an ability to communicate effectively		
(h)) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context		
(i)	a recognition of the need for, and an ability to engage in life-long learning		
(j)			
(k)) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.		

Key Student Outcomes assessed in the course: (b) and (f)

Instructor or course coordinator: Dr Khalid Al-Ghamdi *Last updated:* February 2015